A Support Vector Machine Approach to Detect Financial Statement Fraud in South Africa: A First Look

نویسندگان

  • Stephen O. Moepya
  • Fulufhelo Vincent Nelwamondo
  • Christiaan van der Walt
چکیده

Auditors face the difficult task of detecting companies that issue manipulated financial statements. In recent years, machine learning methods have provided a feasible solution to this task. This study develops support vector machine (SVM) models using published South African financial data. The input vectors are comprised of ratios derived from financial statements. The three SVM models are compared to the k-Nearest Neighbor (kNN) method and Logistic regression (LR). We compare the ability of two feature selection methods that provide an increase classification accuracy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A hybrid model based on machine learning and genetic algorithm for detecting fraud in financial statements

Financial statement fraud has increasingly become a serious problem for business, government, and investors. In fact, this threatens the reliability of capital markets, corporate heads, and even the audit profession. Auditors in particular face their apparent inability to detect large-scale fraud, and there are various ways to identify this problem. In order to identify this problem, the majori...

متن کامل

Financial Reporting Fraud Detection: An Analysis of Data Mining Algorithms

In the last decade, high profile financial frauds committed by large companies in both developed and developing countries were discovered and reported. This study compares the performance of five popular statistical and machine learning models in detecting financial statement fraud. The research objects are companies which experienced both fraudulent and non-fraudulent financial statements betw...

متن کامل

Presenting a Model for Financial Reporting Fraud Detection using Genetic Algorithm

both academic and auditing firms have been searching for ways to detect corporate fraud. The main objective of this study was to present a model to detect financial reporting fraud by companies listed on Tehran Stock Exchange (TSE) using genetic algorithm. For this purpose, consistent with theoretical foundations, 21 variables were selected to predict fraud in financial reporting that finally, ...

متن کامل

The Role of Imputation in Detecting Fraudulent Financial Reporting

Financial fraud detection plays a crucial role in the stability of institutions and the economy at large. Data mining methods have been used to detect/flag cases of fraud due to a large amount of data and possible concept drift. In the financial statement fraud detection domain, instances containing missing values are usually discarded from experiments and this may lead to a loss of crucial inf...

متن کامل

Applying Combined Approach of Sequential Floating Forward Selection and Support Vector Machine to Predict Financial Distress of Listed Companies in Tehran Stock Exchange Market

Objective: Nowadays, financial distress prediction is one of the most important research issues in the field of risk management that has always been interesting to banks, companies, corporations, managers and investors. The main objective of this study is to develop a high performance predictive model and to compare the results with other commonly used models in financial distress prediction M...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014